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Abstract— This paper presents an adaptive nonlinear model-based prediction control (NMPC) for trajectory tracking of wheeled mobile 

robots (WMRs). Robot dynamics are subject to various uncertainties including parameter variations, unknown nonlinearities of the robot 

and torque disturbances from the environment. In this paper, a discrete-time fuzzy model in combination with NMPC is described to allow 

approximation of the unknown dynamics of the robot, including the actuator dynamic. Moreover, by tuning the weighting parameters in the 

cost function of the NMPC, the tracking error of a given trajectory can be minimized. Finally, the parameters of the fuzzy model may be 

adjusted on-line by the use of a gradient descent algorithm in consideration of the uncertainties. The simulation results of a WMR example 

show the effectiveness of the proposed method. 

Index Terms— Gradient descent algorithm, Fuzzy system, Nonlinear model predictive control, Adaptive control, Mobile robots, Trajectory 

tracking. 

——————————      —————————— 

1 INTRODUCTION                                                                     

owadays, robots are being inserted more and more into 
dynamic environments such as robotic soccer, manufac-
turing plants, etc. Trajectory tracking control for mobile 

robots is a fundamental problem, which has been intensively 
investigated in the robotics community.  

The design of control laws for mobile robots with a dynam-
ic model is considered in several papers, for instance in trajec-
tory tracking [1], [2], [3]. One of the early studies of this prob-
lem used a Lyapunov function to design a local asymptotic 
tracking controller. Global tracking was explored by dynamic 
feedback linearization techniques in [4], [5], [6], backstepping 
techniques in [7], [8], [9], and sliding mode techniques in [10]. 
These controllers require that linear and angular velocities 
must not converge to zero, so they can not be used for the reg-
ulation problem of nonholonomic mobile robots. Also, these 
controllers do not take into account the restrictions in the con-
trol signals due to the difficulty of implementation. 

Model predictive control (MPC), also known as receding 
horizon control (RHC), has become one of the most successful 
control strategies developed during the last few decades, and 
unlike many other advanced control techniques, it has desira-
ble features suitable for industrial applications [11], and its 
applications are also expanding to robot control. 

In MPC, a process plant is used to predict future outputs 
over a prescribed period. Properties that set MPC apart from 
other control laws are its on-line optimization and constraints. 
Recent reviews of MPC algorithms and technologies can be 
found in [12], [13]. 

However, the possible applications of MPC are limited to 

linear systems. Where linear models are not sufficiently accu-
rate, the identification of non-linear models for control be-
comes absolutely necessary. Therefore, the more challenging 
task of developing a nonlinear MPC (NMPC) has also been 
attempted [14]. A reactive trajectory tracking controller based 
on nonlinear model predictive control has been presented in 
[15]. A nonlinear model predictive control scheme with obsta-
cle avoidance for trajectory tracking of a mobile robot has been 
proposed in [16]. More examples can be found in [17], [18], 
[19], [20]. 

The success of any MPC implementation depends on the ef-
fectiveness of the solution method used. One possible and 
very promising approach to dynamic optimization is to apply 
intelligent algorithms such as Neural Networks (NN) and 
fuzzy systems, which have been used in controller designs to 
deal with various uncertainty problems in the system. 

A path tracking scheme for a mobile robot based on fuzzy 
logic predictive control is presented in [23], where predictive 
control is used to predict the position and the orientation of 
the robot, while the fuzzy control is used to deal with the non-
linear characteristics of the system. 

The main contribution of this paper is the development of 
an NMPC for tracking control of WMRs. In the proposed con-
troller, a fuzzy model with parameters adapted on-line is used 
to estimate the dynamics of the robot. It is assumed that there 
are uncertainties in both kinematic and dynamic parameters 
and actuator parameters. To deal with the uncertainties, an 
adaptive controller is designed using a gradient descent algo-
rithm. The proposed method is applied to a type (2, 0) WMR. 

The rest of this paper is organized as follows: In Section 2, 
the WMR dynamics and the NMPC strategy are presented. 
Section 3 describes the adaptive NMPC design. Section 4 
shows simulation results, and finally, conclusions are given in 
Section 5. 
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2 PROBLEM FORMULATION 

2.1 Dynamics of WMR 

Using the Euler-Lagrange formulation, the dynamics of 
WMRs can be described by [24], [25], [26]: 

( ) ( , ) ( ) ( ) ( ) ( )T
d     M q q C q q q F q G q τ B q τ A q λ            (1) 

where ( ) n nM q  is a symmetric, positive definite inertia 
matrix, ( , ) n nC q q  is the centripetal and Coriolis matrix, 

1( ) nF q is the vector of surface friction, ( ) n rG q is the 
gravitational vector, dτ  denotes bounded unknown disturb-
ances including unstructured unmodeled dynamics, 

( ) n rB q  is the input transformation matrix, 1rτ  is the 
input vector, ( ) m nA q  is the matrix associated with the 
constraints, and 1mλ  is the vector of constraint forces. 

Surface friction is as follows: 

( ) sgn( )v i d if F F q q q                                                                 (2) 

where vF  is the coefficient of the viscous friction and dF  is 
the coefficient of the dynamic friction. 
    The dynamics of the DC servomotors which drive the 
wheels of the robot can be expressed as follows: 

s T a

a a e e







  

τ K i

Li Ri K u
                                                                   (3) 

where n

e τ  is the vector of torque generated by the motor, 
n n

T

K is the positive definite constant diagonal matrix of 
the motor torque constant, n

a i  is the vector of armature 
currents; L , R , and eK  are the diagonal matrix of armature 
inductance, armature resistance and back electromotive force 
constant of the motors, respectively; e  is the angular veloci-
ties of the actuator motors. 

The motor torque sτ  and the wheel torque τ  are related by 
gear ratio N  as: 

sτ Nτ                                                                                             (4) 

where N  is a positive definite constant diagonal matrix, and 
the angular velocities of the actuators e  are related to the 
wheel angular velocities wv  as: 

1
w e

v N                                                                                        (5) 

By ignoring the armature inductance and considering rela-
tions (4)-(5), Eq. (3) can be defined as follows: 

1 2 wK K τ u v                                                                                (6) 

where  1 T aK  NK R , 2 1eK KNK . The relation between 
the wheel angular velocities wv  and the velocity vector v  is: 

1

1

r
w

l

b

r r

b

r r





 
  
     
    
 

v v v                                                         (7) 

Substituting (6) and (7) in (1), the equation of WMR, includ-
ing actuator dynamics, can be obtained as: 

1 2

( ) ( , ) ( ) ( )

( ) ( ) ( )

d

TK K

    

  

M q q C q q q F q G q τ

B q u v A q λ
                   (8) 

The kinematic model of WMR can be expressed as follows: 

( )q S q v                                                                                          (9) 

 

 
By taking the time derivative of the kinematic model (8), 

the robot dynamics (8) can be transformed to: 
 

1d K   Mv Cv F τ Bu                                                             (10) 

where 

2, K    T T T
M S MS C S MS S CS B                                    (11) 

, , d d  T T TB S B F S F τ S τ  

According to (11), the wheel actuator input voltages are 
considering as the control inputs. 

2.2 Model Predictive Control Algorithm 

The MPC is an optimal control which uses predictions of the 
system output to calculate the control law [27]. At each sam-
pling instant, the model of the system is used to predict the 
output of the system over a prediction horizon N p , and by 
minimizing a predefined objective function, the future se-
quence of control inputs are computed. 

By use of the receding horizon strategy, only the first con-
trol action in the sequence is applied to the system until the 
next sampling time is reached [18]. The horizons are then 
moved one sample period towards the future, and optimiza-
tion is repeated. 

Consider the following nonlinear state-space model: 

1 ( , )t t tx f x u                                                                                  (12) 

where n

tx   and m

tu   are the system state and control 
input, respectively. In this paper, it is assumed that function 
f  in (12) is continuous over n m  . By defining error vec-

tors rx x x   and ru u u  , we can formulate the cost func-
tion as follows: 

1

1

( ) ( 1| ) ( 1| )

( 1) ( 1)

p

c

N

T

j

N

T

j

J k k j k k j k

k j k j





    

    





x Q x

u R u

                      (13) 

where pN , cN  are the prediction horizon and control hori-
zon respectively, and 0Q , 0R  are weighting matrices for 
the error vectors of state and control variables respectively. 

We consider also a constraint applied to the amplitude of 
the control variable: 

min max( | )k j k  u u u                                                                (14) 

Hence, the nonlinear optimization problem can be ex-
pressed as follows: 

 
,

argmin ( )J k 
x u

u                                                                         (15) 

Such that: 

0

min max

( | )

( 1| ) ( ( | ) , ( | )

( | )

d

k k

k j k f k j k k j k

k j K



    

  

X x

X X u

u u u

                                (16) 

At each sampling time k , the optimization problem (15) 
can be solved, yielding a sequence of optimal control signals 

* *{ ( | ), , ( 1| )}ck K k N K u u . Then the first element of the 
sequence of optimal controls, ( | )k Ku , can be applied to the 
optimization problem as the actual control action. This proce-
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dure repeats at time 1k  . 
 

 

 

 
 

 

 
 

 

3 ADAPTIVE NMPC DESIGN 

The purpose of trajectory tracking of WMRs is to obtain a con-
trol law based on an adaptive fuzzy NMPC technique. The 
overall control structure is shown in Fig. 1. Fuzzy systems are 
appropriate candidates for modeling and control of nonlinear 
systems. An adaptive fuzzy system is defined as a fuzzy logic 
system whose rules are developed through a training process.  

The proposed fuzzy model is used to approximate the 
model of a mobile robot, including actuator dynamics in order 
to predict the future output. Also the gradient descent algo-
rithm is employed to adapt the parameter uncertainties.  

The governing equation of a mobile robot, including actua-
tor dynamics, can be described generally as a nonlinear dis-
crete system: 

( 1) ( ( ), ( ))k k k x f x u                                                                    (17) 

where [ , ]Tx v v  is the vector of system states and 
( ) [ ( ), ( )]T

r l
k u k u ku is the vector of input voltages. 
In the proposed control scheme, a fuzzy model is used to 

estimate the model of a mobile robot with actuator dynamics 
(17) for predicting the robot behavior. The fuzzy model con-
sists of two parallel fuzzy systems as shown in Fig. 2. 

Each fuzzy system has three inputs and one output. The 
vectors  ( 1), ( 1), ( 1) ( 1)

T

r lv k k u k u k     , and 

 ( 1), ( 1), ( 1) ( 1)
T

r lk v k u k u k       are the first and second 
fuzzy system input variables, respectively.  

The parameters ( 1)ru k   and ( 1)lu k   denote the right 
wheel voltage and left wheel voltage of the robot. The outputs 
are linear velocity ( )v k , and angular velocity ( )k  at time 
instant k . 

 
 
 
 
 
 
 
 
 
 
 
 

From the robot dynamics (10), (11), v  and   can be ob-
tained as: 

1 2

2

2

1 2

2

2 ( 2 )
( )

2
( )

r l

C

r l

K K m m d
v u u v

mr mr m

K b m d K b
u u v

r r

w
q

w

w
l l l

-
= + - +

= - - -

&
&

&

                                  (18) 

where 2( ( 2 ) )
c

I m m d
w

l = + - . 

The  inputs ( 1) ( 1)r lu k u k    and ( 1) ( 1)r lu k u k   are se-
lected for fuzzy systems because in (18), the coefficients of 

ru and lu  in the equation used to calculate v  and the coeffi-
cients of ru and lu  in the equation used to calculate  are  
identical. 

The membership functions of inputs and outputs are 
shown in Fig. 3. The next step is the creation of the fuzzy rules 
based on sample data obtained from the approximate robot 
dynamics (17). The fuzzy rule-base which is shown in Tables 1 
and 2, contains rules covering all combinations of membership 
functions of the 3 input variables, giving a total of 45 rules. 

In this paper we use the set of fuzzy system which includes 
a singleton fuzzifier, a product inference engine, and the cen-
ter-average defuzzifier. 

The set of fuzzy system can be expressed as follows: 

 

 

 

 

2

2

1 1

2

2

1 1

exp

2

( )
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2

lnM
i il

l
l i i

lnM
i i

l
l i i

x x
y

a
f x

b
x x





 

 

  
  

  
  

   
  

  
  

  
  

 

 

                                   (19) 

 (((7

 

1 1

,

M M
l l l

l l

a y z b z

 

                                                                   (20) 

 

 

2

2

1

exp
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ln
i il

l
i i

x x
z



 
 

  
 
 

                                                             (21) 

where M  and n  are constants which denote the number of 
fuzzy rules and inputs respectively. 

The fuzzy membership function that is used in this paper is 
a Gaussian-shaped form with a centroid l

ix  and a width l
i . 

Also, ly  is the centroid of the fuzzy membership function cor-
responding to the lth rule. 

The purpose of adjusting the parameters of the fuzzy model 
is to minimize the adaptive error which is defined as follows: 

21
( ) ( ( ( )) ( ))

2
e k f x k y k                                                               (22) 

where ( )f x  is the fuzzy output, and ( )y k  is the real output 
of the plant at time k , and ( )e k  is the error at time k . The 
parameters of the fuzzy model are updated on-line via the 
following gradient descent method: 

( ) ( ) ( ( ( )) ( ))
( 1) ( ) ,

( ) ( )

l l

l l

e k e k f x k y k
y k y k

by k y k


  
   

 
             (23)

   

 

 

Fig. 1. Block diagram of the proposed NMPC 

 

Fuzzy  

System1 

( )

( ) ( )

( )

r l

k

u k u k

v k

wé ù
ê ú
ê ú-
ê ú
ê ú
ë û

 

)1( kv  

Fuzzy 

 System2 

 

)1( k  

 

( )

( ) ( )

( )

r l

v k

u k u k

kw

é ù
ê ú
ê ú+
ê ú
ê ú
ë û

 

 

Fig. 2. Block diagram of Fuzzy model 
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where, 0 1   is the learning rate of fuzzy system. 

4 SIMULATION RESULTS 

In this section, some computer simulations are performed to 
evaluate the performance of the proposed controller. In these 
simulations, the real physical parameters of the WMR and 
control parameters are summarized in Table 3. 

The parameter cm  is the mass of the platform without the 
driving wheels and the rotors of the DC motors, m  denotes 
the mass of each driving wheel plus the rotor of its motor, cI  
denotes the moment of inertia of the platform without the 
driving wheels and the rotors of the motors and mI  denotes 
the moment of inertia of each wheel and the motor rotor about 
a wheel diameter. 
 

TABLE 1 
FUZZY RULE-BASE OF FUZZY SYSTEM1 FOR THE INPUTS: (A) 

( ) ( )
r l

u k u k N+ Î , (B) ( ) ( )
r l

u k u k Z+ Î , AND (C) 
( ) ( )

r l
u k u k P+ Î . 
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(d) 

Fig. 3. Membership functions of (a) first input, (b) second input, 
(c) third inputs, and (d) the output, of each fuzzy system 
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The kinematic and dynamic matrices in (11) are expressed 
as: 

2
2

2
2

2

cos 0
0

( ) sin 0 ,
0

0 1

2

2

c

c

m
q

I

K
m d

r

b K
m d

r









 
  

    
   

 
 
 
 
 
 

S M

C

                                                (26) 

where 2cm m m   , 2 22 2c m cI I I m d m b    . 

The motor voltage bounds are listed as [-12 v, 12 v]. The 
controller parameters are selected as 5, 1.p cN N   The sam-
pling time is 0.1 sec. The weighting matrices are assumed as 

 50,30,1diagQ ,  0.005,0.005diagR .  
As discussed before, the model of the mobile robot with 

motor dynamics is estimated by fuzzy systems during the on-
line optimization. The learning rate of each fuzzy system uses 

0.92  . 
In order to show the performance of the proposed control-

ler, the fuzzy NMPC was applied to the robot for two cases:  
In the first simulation, the adaptive tracking controller is 

tested only for uncertain parameters. It is assumed that there 
is no knowledge about the WMR parameters, and there is no 
disturbance in this case.  

The desired trajectory for this case is a circular path which 
is chosen as follows: 

( ) 10 7.5cos( ),

( ) 25 7.5sin( )

r r

r r

x t t

y t t





 

 
                                                                (27) 

where ( ) 0.2r t  , and ( ) 1.5rv t  .  

The initial position of the WMR is selected as 
( ) 19,24, / 2

T
t pi  0q . 

Simulation results of the proposed fuzzy NMPC are shown 
in figures 4 to 6. As these figures show, the WMR can follow 
the desired path and at the desired velocity with good accura-
cy. Moreover, the motor voltages are within the predefined 
bounds. Mean square position and velocity errors for non-
adaptive Fuzzy NMPC and adaptive Fuzzy NMPC after 
reaching the trajectory are given in Table. 4. As shown in the 
table, the control behavior of the adaptive Fuzzy model base 
predictive controller is seen to be relatively ideal for tracking a 
circular path. 

In the second case, an external disturbance dτ  is applied to 
the WMR at 5t   sec. The desired trajectory for this case is a 
circle and the other control parameters are the same as in case 
one. The simulation results of the non-adaptive Fuzzy NMPC 
and the adaptive Fuzzy NMPC are shown in Fig. 7 respective-
ly. As shown in this figure, the non-adaptive Fuzzy NMPC 
follows the reference trajectory with a sizeable error vesus the 
adaptive Fuzzy NMPC. 

As these figures show, the adaptation capability of the 
fuzzy system can cope with this disturbannce very quickly 
and return the mobile robot to its desired path, yielding an 
adaptive and robust control method. 

TABLE 2 
FUZZY RULE-BASE OF FUZZY SYSTEM 2 FOR THE INPUTS: (A) 

( ) ( )
r l

u k u k N- Î , (B) ( ) ( )
r l

u k u k Z- Î , AND (C) 
( ) ( )

r l
u k u k P- Î  

PB PS Z NS NB 
          

( )kw  

          
                

  ( )v k  

Z NS NS NB NB N 
Z NM Z NS NB Z 

PM PM Z NM NB P 

(A) 

PB PS Z NS NB 
       

( )kw   

 

 ( )v k  

Z Z Z NB NB N 
PM Z Z Z NM Z 
PB PB PS NM NB P 

(B) 

PB PS Z NS NB 

       
( )kw  

       
       

               

( )v k  

PM PS PS NM NM N 
PM PS PS PS NM Z 
PB PB PS NM NB P 

(C) 

TABLE 3 
MEAN SQUARE POSITION AND VELOCITY ERRORS FOR NON-

ADAPTIVE FUZZY NMPC AND ADAPTIVE FUZZY NMPC 

MSE 
 

0.3445 Position Mode  
Non-Adaptive 0.0453 Velocity 

0.099 Position Mode  
Adaptive 0.0019 Velocity 

 

 

TABLE 3 
WMR PARAMETERS 

Parameter Simulation 
value 

r(m) 0.15 
b (m) 0.75 
d(m) 0.3 
L(m) 0.1 

m (m) 1 

cm (m) 36 

mI (Kg.m2) 0.0025 

cI (Kg.m2) 15.625 

I (Kg.m2) 0.005 
T(s) 0.02 
K1 7.2 
K2 2.592 
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5 CONCLUSION 

To achieve better path tracking for WMRs, an adaptive fuzzy 
NMPC control method was designed in this paper. The pro-
posed controller solves the integrated kinematic and dynamic 
tracking problem in the presence of both parametric and non-
parametric uncertainties. Furthermore, a fuzzy system whose 
parameters are updated on-line by a gradient descent algo-
rithm has been employed. While this fuzzy system can pro-
vide an appropriate model of the robot, it can also deal with 
any changes in robot parameters.  

The simulation results on a type (2, 0) WMR illustrate the 
effectiveness of the proposed control scheme. Future work 
should focus on the stability analysis of the proposed method. 
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Fig. 4. Desired and actual trajectories for WMR 
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Fig. 5. Desired and actual velocities of WMR 
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(b) 

Fig. 7. Desired and actual trajectories for WMR in presence of 
external disturbances for: (a) Non-Adaptive Fuzzy NMPC, and 
(b) Adaptive Fuzzy NMPC 
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Fig. 6. Control voltages of the WMR for: (a) the right wheel, (b) 
the left wheel 
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